Modelling sentiments based on objectivity and subjectivity with self-attention mechanisms

Author:

Ng HuORCID,Chia Glenn Jun WengORCID,Yap Timothy Tzen VunORCID,Goh Vik TorORCID

Abstract

Background: The proliferation of digital commerce has allowed merchants to reach out to a wider customer base, prompting a study of customer reviews to gauge service and product quality through sentiment analysis. Sentiment analysis can be enhanced through subjectivity and objectivity classification with attention mechanisms. Methods: This research includes input corpora of contrasting levels of subjectivity and objectivity from different databases to perform sentiment analysis on user reviews, incorporating attention mechanisms at the aspect level. Three large corpora are chosen as the subjectivity and objectivity datasets, the Shopee user review dataset (ShopeeRD) for subjectivity, together with the Wikipedia English dataset (Wiki-en) and Internet Movie Database (IMDb) for objectivity. Word embeddings are created using Word2Vec with Skip-Gram. Then, a bidirectional LSTM with an attention layer (LSTM-ATT) imposed on word vectors. The performance of the model is evaluated and benchmarked against classification models of Logistics Regression (LR) and Linear SVC (L-SVC). Three models are trained with subjectivity (70% of ShopeeRD) and the objectivity (Wiki-en) embeddings, with ten-fold cross-validation. Next, the three models are evaluated against two datasets (IMDb and 20% of ShopeeRD). The experiments are based on benchmark comparisons, embedding comparison and model comparison with 70-10-20 train-validation-test splits. Data augmentation using AUG-BERT is performed and selected models incorporating AUG-BERT, are compared. Results: L-SVC scored the highest accuracy with 56.9% for objective embeddings (Wiki-en) while the LSTM-ATT scored 69.0% on subjective embeddings (ShopeeRD).  Improved performances were observed with data augmentation using AUG-BERT, where the LSTM-ATT+AUG-BERT model scored the highest accuracy at 60.0% for objective embeddings and 70.0% for subjective embeddings, compared to 57% (objective) and 69% (subjective) for L-SVC+AUG-BERT, and 56% (objective) and 68% (subjective) for L-SVC. Conclusions: Utilizing attention layers with subjectivity and objectivity notions has shown improvement to the accuracy of sentiment analysis models.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference30 articles.

1. Aspect-level sentiment analysis on e-commerce data.;S Vanaja;2018 Int Conf Inventive Res Computing Applications (ICIRCA).,2018, July

2. Detecting factual and non-factual content in news articles.;I Sahu;Proc fourth ACM IKDD conferences on data sciences.,2017, March

3. Attention is all you need.;A Vaswani;In Advances in neural information pro-cessing systems.,2017

4. Attention Models for Sentiment Analysis Using Objectivity and Subjectivity Word Vectors

5. Natural language processing (almost) from scratch.;R Collobert;J Machine Learn Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3