Author:
Samnuan Karnyart,Blakney Anna K,McKay Paul F,Shattock Robin J
Abstract
Background: Self-amplifying RNA (saRNA) vaccines are able to induce a higher antigen-specific immune response with a more cost-effective and rapid production process compared to plasmid DNA vaccines. saRNAs are synthesized through in vitro transcription (IVT); however, this process has mainly been optimized for relatively short mRNAs. Methods: Here, we optimized the IVT process for long saRNAs, approximately 9.4 kb, through a design of experiment (DoE) approach to produce a maximal RNA yield and validated the optimal IVT method on various sizes of RNA. Results: We found that magnesium has the highest impact on RNA yield with acetate ions enabling a higher yield than chloride ions. In addition, the interaction between magnesium and nucleoside triphosphates (NTPs) is highly essential for IVT. Further addition of sodium acetate (NaOAc) during IVT provided no added benefit in RNA yield. Moreover, pyrophosphatase was not essential for productive IVT. The optimal IVT method can be used to synthesize different lengths of RNA. Conclusions: These findings emphasize the ability to synthesize high quality and quantity of saRNA through IVT and that the optimal amount of each component is essential for their interactions to produce a high RNA yield.
Funder
Engineering and Physical Sciences Research Council
European Commission H2020
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献