Design-of-experiments in vitro transcription yield optimization of self-amplifying RNA

Author:

Samnuan Karnyart,Blakney Anna K,McKay Paul F,Shattock Robin J

Abstract

Background: Self-amplifying RNA (saRNA) vaccines are able to induce a higher antigen-specific immune response with a more cost-effective and rapid production process compared to plasmid DNA vaccines. saRNAs are synthesized through in vitro transcription (IVT); however, this process has mainly been optimized for relatively short mRNAs. Methods: Here, we optimized the IVT process for long saRNAs, approximately 9.4 kb, through a design of experiment (DoE) approach to produce a maximal RNA yield and validated the optimal IVT method on various sizes of RNA. Results: We found that magnesium has the highest impact on RNA yield with acetate ions enabling a higher yield than chloride ions. In addition, the interaction between magnesium and nucleoside triphosphates (NTPs) is highly essential for IVT. Further addition of sodium acetate (NaOAc) during IVT provided no added benefit in RNA yield. Moreover, pyrophosphatase was not essential for productive IVT. The optimal IVT method can be used to synthesize different lengths of RNA. Conclusions: These findings emphasize the ability to synthesize high quality and quantity of saRNA through IVT and that the optimal amount of each component is essential for their interactions to produce a high RNA yield.

Funder

Engineering and Physical Sciences Research Council

European Commission H2020

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference31 articles.

1. Mechanism of action of mRNA-based vaccines.;C Iavarone;Expert Rev. Vaccines,2017

2. Advances in mRNA Vaccines for Infectious Diseases.;C Zhang;Front. Immunol.,2019

3. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses.;A Vogel;Molecular Therapy: The Journal of the American Society of Gene Therapy,2018

4. Nonviral delivery of self-amplifying RNA vaccines.;A Geall;Proc. Natl. Acad. Sci. U. S. A.,2012

5. Intradermal electroporation of naked replicon RNA elicits strong immune responses.;D Johansson;PLoS One,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3