Evidence for yeast artificial synthesis in SARS-CoV-2 and SARS-CoV-1 genomic sequences

Author:

Lisewski Andreas MartinORCID

Abstract

Background: Knowledge about the origin of SARS-CoV-2 is necessary for both a biological and epidemiological understanding of the COVID-19 pandemic. Evidence suggests that a proximal evolutionary ancestor of SARS-CoV-2 belongs to the bat coronavirus family. However, as further evidence for a direct zoonosis remains limited, alternative modes of SARS-CoV-2 biogenesis should be considered.    Results: Here we show that the genomes from SARS-CoV-2 and from SARS-CoV-1 are differentially enriched with short chromosomal sequences from the yeast S. cerevisiae at focal positions that are known to be critical for host cell invasion, virus replication, and host immune response. For SARS-CoV-1, we identify two sites: one at the start of the RNA dependent RNA polymerase gene, and the other at the start of the spike protein’s receptor binding domain; for SARS-CoV-2, one at the start of the viral replicase domain, and the other toward the end of the spike gene past its domain junction. At this junction, we detect a highly specific stretch of yeast DNA origin covering the critical furin cleavage site insert PRRA, which has not been seen in other lineage b betacoronaviruses. As yeast is not a natural host for this virus family, we propose a passage model for viral constructs in yeast cells based on co-transformation of virus DNA plasmids carrying yeast selectable genetic markers followed by intra-chromosomal homologous recombination through gene conversion. Highly differential sequence homology data across yeast chromosomes congruent with chromosomes harboring specific auxotrophic markers further support this passage model. Conclusions: These results provide evidence that among SARS-like coronaviruses only the genomes of SARS-CoV-1 and SARS-CoV-2 contain information that points to a synthetic passage in genetically modified yeast cells. Our data specifically allow the identification of the yeast S. cerevisiae as a potential recombination donor for the critical furin cleavage site in SARS-CoV-2.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3