Nutrient dynamics in water and soil under conventional rice cultivation in the Vietnamese Mekong Delta

Author:

Ngan Nguyen Vo ChauORCID,Thao Huynh VanORCID,Giang Nam Nguyen Dinh

Abstract

Background The evaluation of nutrient variability plays a crucial role in accessing soil potentials and practical intervention responses in rice production systems. Synthetic fertilizer applications and cultivation practices are considered key factors affecting nutrient dynamics and availability. Here, we assessed the nutrient dynamics in surface, subsurface water and soil under local water management and conventional rice cultivation practices in the Vietnamese Mekong Delta. Methods We implemented a field experiment (200 m  2) in the 2018 wet season and the 2019 dry season in a triple rice-cropping field. Surface water, subsurface water (30–45 cm), and topsoil (0–20 cm) were collected eight samples during the rice-growing seasons to clarify its nutrient dynamic. Results The results showed that N-NH  4 +, P-PO  4 3- and total P peaks were achieved after fertilizing. Irrespective of seasons, the nutrient content in surface water was always greater than that of subsurface water ( P<0.001), with the exception of N-NO  3 -, no significant difference was disclosed ( P>0.05). When comparing the wet and dry seasons, nutrient concentrations exhibited minor differences ( P>0.05). Under conventional rice cultivation, the effects of synthetic fertilizer topdressing on the total N, soil organic matter (SOM), and total P were negligible in the soil. Higher rates of N fertilizer application did not significantly increase soil N-NH  4 +, total N, yet larger P fertilizer amounts substantially enhanced soil total P ( P<0.001). Conclusions Under conventional rice cultivation, the low concentration of N-NH  4 +, P-PO  4 3- and total P in the subsurface water indicated that nutrient losses mainly occur through runoff rather than leaching. Notably, nutrient content in soil was fairly high, whilst SOM was varied from low to medium between seasons. Future work should consider the nutrient balance and nutrient dynamic simulation on surface and subsurface.

Funder

Can Tho University Improvement Project

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3