Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth

Author:

Álvarez-Salgado Emma,Arredondo-Peter Raúl

Abstract

Non-symbiotic hemoglobins (nsHbs) are widely distributed in land plants, including rice. These proteins are classified into type 1 (nsHbs-1) and type 2. The O2-affinity of nsHbs-1 is very high mostly because of an extremely low O2-dissociation rate constant resulting in that nsHbs-1 apparently do not release O2 after oxygenation. Thus, it is possible that the in vivo function of nsHbs-1 is other than O2-transport. Based on the properties of multiple Hbs it was proposed that nsHbs-1 could play diverse roles in rice organs, however the in vivo activity of rice nsHbs-1 has been poorly analyzed. An in vivo analysis for rice nsHbs-1 is essential to elucidate the biological function(s) of these proteins. Rice Hb1 and Hb2 are nsHbs-1 that have been generated in recombinant Escherichia coli TB1. The rice Hb1 and Hb2 amino acid sequence, tertiary structure and rate and equilibrium constants for the reaction of O2 are highly similar. Thus, it is possible that rice Hb1 and Hb2 function similarly in vivo. As an initial approach to test this hypothesis we analyzed the effect of the synthesis of rice Hb1 and Hb2 in the recombinant E. coli TB1 growth. Effect of the synthesis of the O2-carrying soybean leghemoglobin a, cowpea leghemoglobin II and Vitreoscilla Hb in the recombinant E. coli TB1 growth was also analyzed as an O2-carrier control. Our results showed that synthesis of rice Hb1, rice Hb2, soybean Lba, cowpea LbII and Vitreoscilla Hb inhibits the recombinant E. coli TB1 growth and that growth inhibition was stronger when recombinant E. coli TB1 synthesized rice Hb2 than when synthesized rice Hb1. These results suggested that rice Hb1 and Hb2 could function differently in vivo.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3