Motion and Geometric Feature Analysis for Real-time Automatic Micro-expression Recognition Systems

Author:

Muhammad Buhari AdamuORCID,Ooi Chee-Pun,Baskaran Vishnu Monn,Tan Wooi-Haw

Abstract

The trend of real-time micro-expression recognition systems has increased with recent advancements in human-computer interaction (HCI) in security and healthcare. Several studies in this field contributed towards recognition accuracy, while few studies look into addressing the computation costs. In this paper, two approaches for micro-expression feature extraction are analyzed for real-time automatic micro-expression recognition. Firstly, motion-based approach, which calculates motion of subtle changes from an image sequence and present as features. Then, secondly, a low computational geometric-based feature extraction technique, a very popular method for facial expression recognition in real-time. These approaches were integrated in a developed system together with a facial landmark detection algorithm and a classifier for real-time analysis. Moreover, the recognition performance were evaluated using SMIC, CASME, CAS(ME)2 and SAMM datasets. The results suggest that the optimized Bi-WOOF (leveraging on motion-based features) yields the highest accuracy of 68.5%, while the full-face graph (leveraging on geometric-based features) yields 75.53% on the SAMM dataset. On the other hand, the optimized Bi-WOOF processes sample at 0.36 seconds and full-face graph processes sample at 0.10 seconds with a 640x480 image size. All experiments were performed on an Intel i5-3470 machine.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference34 articles.

1. Police lie detection accuracy: The effect of lie scenario.;M O’Sullivan;Law Hum Behav.,2009

2. Behavior and security. protecting airline passengers in the age of terrorism.;M Frank,2009

3. Detecting depression from facial actions and vocal prosody.;J Cohn;2009 3rd Int Conf Affective Computing Intelligent Interaction Workshops.,2009

4. Nonverbal leakage and clues to deception.;P Ekman;Psychiatry.,1969

5. Towards macro-and micro-expression spotting in video using strain patterns.;M Shreve;2009 Workshop on Applications of Computer Vision (WACV).,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3