Prediction of the effects of the top 10 synonymous mutations from 26645 SARS-CoV-2 genomes

Author:

Boon Wan XinORCID,Sia Boon Zhan,Ng Chong HanORCID

Abstract

Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple works had been done to study nonsynonymous mutations, which change protein sequences.  However, there is little study on the effects of SARS-CoV-2 synonymous mutations, which may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome.   Methods: A total of 26645 SARS-CoV-2 genomic sequences retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database were aligned using MAFFT. Then, the mutations and their respective frequency were identified.  Multiple RNA secondary structures prediction tools, namely RNAfold, IPknot++ and MXfold2 were applied to predict the effect of the mutations on RNA secondary structure and their base pair probabilities was estimated using MutaRNA. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2.  Results: A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a.. Of these top 10 highest frequency synonymous mutations, C913U, C3037U, U16176C and C18877U mutants show pronounced changes between wild type and mutant in all 3 RNA secondary structure prediction tools, suggesting these mutations may have some biological impact on viral fitness. These four mutations show changes in base pair probabilities. All mutations except U16176C change the codon to a more preferred codon, which may result in higher translation efficiency. Conclusion:   Synonymous mutations in SARS-CoV-2 genome may affect RNA secondary structure, changing base pair probabilities and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.

Funder

Multimedia University, Malaysia IRFund 2.0

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference53 articles.

1. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.;C Huang;Lancet.,2020

2. The SARS-CoV-2 outbreak: What we know.;D Wu;Int J Infect Dis.,2020

3. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies.;A Sharma;Int J Antimicrob Agents.,2020

4. Mechanisms of viral mutation.;R Sanjuán;Cell Mol Life Sci.,2016

5. Genome-Wide Identification and Characterization of Point Mutations in the SARS-CoV-2 Genome.;J Kim;Osong Public Heal Res Perspect.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3