Performance Analysis of Simulated Annealing and Genetic Algorithm on systems of linear equations

Author:

Islam Md. Shabiul,Khatoon Most Tahamina,Siddiquee Kazy Noor-e-AlamORCID,Yong Wong Hin,Huda Mohammad Nurul

Abstract

Problem solving and modelling in traditional substitution methods at large scale for systems using sets of simultaneous equations is time consuming. For such large scale global-optimization problem, Simulated Annealing (SA) algorithm and Genetic Algorithm (GA) as meta-heuristics for random search technique perform faster. Therefore, this study applies the SA to solve the problem of linear equations and evaluates its performances against Genetic Algorithms (GAs), a population-based search meta-heuristic, which are widely used in Travelling Salesman problems (TSP), Noise reduction and many more. This paper presents comparison between performances of the SA and GA for solving real time scientific problems. The significance of this paper is to solve the certain real time systems with a set of simultaneous linear equations containing different unknown variable samples those were simulated in Matlab using two algorithms-SA and GA. In all of the experiments, the generated random initial solution sets and the random population of solution sets were used in the SA and GA respectively. The comparison and performances of the SA and GA were evaluated for the optimization to take place for providing sets of solutions on certain systems. The SA algorithm is superior to GA on the basis of experimentation done on the sets of simultaneous equations, with a lower fitness function evaluation count in MATLAB simulation. Since, complex non-linear systems of equations have not been the primary focus of this research, in future, performances of SA and GA using such equations will be addressed. Even though GA maintained a relatively lower number of average generations than SA, SA still managed to outperform GA with a reasonably lower fitness function evaluation count. Although SA sometimes converges slowly, still it is efficient for solving problems of simultaneous equations in this case. In terms of computational complexity, SA was far more superior to GAs.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference23 articles.

1. Students' Preference of Method of Solving Simultaneous Equations.;Ugboduma;Glob. J. Educ. Res.,2012

2. Mathematicians of Gaussian Elimination.;J Grcar;Notice of the AMS.,2011

3. The Effectiveness of Genetic Algorithm in Solving Simultaneous Equations.;I Abiodun;Int. J. Comput. Appl.,2011

4. Optimization by simulated annealing.;S Kirkpatrick;Science.,1983

5. Simulated annealing algorithms to minimise the completion time variance of jobs in permutation flowshops.;K Jayabalan;Int. J. Ind. Syst. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3