Abstract
Eighteen severe human diseases have so far been associated with trinucleotide repeat expansions coding for either polyalanine (encoded by a GCN repeat tract) or polyglutamine (encoded by a CAG repeat tract). Among them, oculopharyngeal muscular dystrophy (OPMD), spinocerebellar ataxia type-3 (SCA3), and Huntington’s disease (HD) are late-onset autosomal-dominant disorders characterized by the presence of intranuclear inclusions (INIs). We have previously identified the OPMD causative mutation as a small expansion (from 2 in normal to 7 in disease) of a GCG repeat tract in the PABPN1 gene. In addition, -1 ribosomal frameshifting has been reported to occur in expanded CAG repeat tracts in the ATXN3 (SCA3) and HTT (HD) genes, resulting in the translation of a hybrid CAG/GCA repeat tract and the production of a polyalanine-containing peptide. Previous studies on OPMD suggest that polyalanine-induced toxicity is very sensitive to the dosage and length of the alanine stretch. Here we report the characterization of a polyclonal antibody that selectively recognizes pathological expansions of polyalanine in PABPN1. Furthermore, our antibody also detects the presence of alanine proteins in INIs of SCA3 and HD patient samples.
Funder
Canadian Institutes of Health Research
Subject
General Medicine,General Chemistry