Mechanical movement data acquisition method based on the multilayer neural networks and machine vision in a digital twin environment

Author:

Li HaoORCID,Liu Gen,Wang HaoqiORCID,Wen Xiaoyu,Xie Guizhong,Luo Guofu,Zhang ShuaiORCID,Yang Miying

Abstract

Background: Digital twin requires virtual reality mapping and optimization iteration between physical devices and virtual models. The mechanical movement data collection of physical equipment is essential for the implementation of accurate virtual and physical synchronization in a digital twin environment. However, the traditional approach relying on PLC (programmable logic control) fails to collect various mechanical motion state data. Additionally, few investigations have used machine visions for the virtual and physical synchronization of equipment. Thus, this paper presents a mechanical movement data acquisition method based on multilayer neural networks and machine vision. Methods: Firstly, various visual marks with different colors and shapes are designed for marking physical devices. Secondly, a recognition method based on the Hough transform and histogram feature is proposed to realize the recognition of shape and color features respectively. Then, the multilayer neural network model is introduced in the visual mark location. The neural network is trained by the dropout algorithm to realize the tracking and location of the visual mark. To test the proposed method, 1000 samples were selected. Results: The experiment results shows that when the size of the visual mark is larger than 6mm, the recognition success rate of the recognition algorithm can reach more than 95%. In the actual operation environment with multiple cameras, the identification points can be located more accurately. Moreover, the camera calibration process of binocular and multi-eye vision can be simplified by the multilayer neural networks. Conclusions: This study proposes an effective method in the collection of mechanical motion data of physical equipment in a digital twin environment. Further studies are needed to perceive posture and shape data of physical entities under the multi-camera redundant shooting.

Funder

Henan Provincial Science and Technology Research Project

National Natural Science Foundation of China

Publisher

F1000 Research Ltd

Reference28 articles.

1. Production information interoperability over the Internet: A standardised data acquisition tool developed for industrial enterprises.;A Decelle;Computers in Industry.,2012

2. Virtually perfect: Driving innovative and lean products through product lifecycle management.;M Grieves,2011

3. Real-virtual components interaction for assembly simulation and planning.;X Wang;Robotics and Computer-Integrated Manufacturing.,2016

4. Information systems for enterprise integration, interoperability and networking: theory and applications.;H Panetto;Enterprise Information Systems.,2013

5. Synchronizing physical and digital factory: benefits and technical challenges.;E Gianfranco;Procedia CIRP.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3