Spatial-temporal data analysis of digital twin

Author:

He XingORCID,Ai Qian,Pan Bo,Tang Lei,Qiu Robert

Abstract

Background: Digital Twin (DT) has proven to be one of the most promising technologies for routine monitoring and management of complex systems with uncertainties. Methods: Our work, which is mainly concerned with heterogeneous spatial-temporal data, focuses on exploring data utilization methodology in DT. The goal of this research is to summarize the best practices that make the spatial-temporal data analytically tractable in a systematic and quantifiable manner. Some methods are found to handle those data via jointly spatial-temporal analysis in a high-dimensional space effectively. We provide a concise yet comprehensive tutorial on spatial-temporal analysis considering data, theories, algorithms, indicators, and applications. The advantages of our spatial-temporal analysis are discussed, including model-free mode, solid theoretical foundation, and robustness against ubiquitous uncertainty and partial data error. Finally, we take the condition-based maintenance of a real digital substation in China as an example to verify our proposed spatial-temporal analysis mode. Results: Our proposed spatial-temporal data analysis mode successfully turned raw chromatographic data, which are valueless in low-dimensional space, into an informative high-dimensional indicator. The designed high-dimensional indicator could capture the ’insulation’ correlation among the sampling data over a long time span. Hence it is robust against external noise, and may support decision-making. This analysis is also adaptive to other daily spatial-temporal data in the same form. Conclusions: This exploration and summary of spatial-temporal data analysis may benefit the fields of both engineering and data science.

Funder

National Natural Science Foundation of China

State Grid Shanghai Pudong Electric Power Supply Company

Publisher

F1000 Research Ltd

Reference41 articles.

1. Digital twin in industry: State-of-the-art.;F Tao;IEEE Trans Industr Inform.,2018

2. A big data architecture design for smart grids based on random matrix theory.;X He;IEEE Trans Smart Grid.,2017

3. The evolution of power system characteristics and related thinking.;J Guo;2nd Clean energy development and consumption Symposium.,2019

4. A correlation analysis method for power systems based on random matrix theory.;X Xu;IEEE Trans Smart Grid.,2017

5. Designing for situation awareness of future power grids: An indicator system based on linear eigenvalue statistics of large random matrices.;X He;IEEE Access.,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3