A discrete event simulation-based methodology for building a digital twin of patient pathways in the hospital for near real-time monitoring and predictive simulation

Author:

Karakra AbdallahORCID,Fontanili FranckORCID,Lamine Elyes,Lamothe Jacques

Abstract

Background: Discrete Event Simulation (DES) is one of the many tools and methods used in the analysis and improvement of healthcare services. Indeed, DES provides perhaps the most powerful and intuitive method for analyzing, evaluating, and improving complex healthcare systems. This paper highlights the process of developing a Digital Twin (DT) framework based on online DES to run the DES model in parallel with the real world in real-time. Methods: This paper suggests a new methodology that uses DES connected to the Internet of Things (IoT) devices to build a DT platform of patient pathways in a hospital for near real-time monitoring and predictive simulation. An experimental platform that mimics the behavior of a hospital has been used to validate this methodology. Results: The application of the proposed methodology allowed us to test the monitoring functionality in the DT. Therefore, we noticed that the DT behaves exactly as the emulator does in near real-time, we also tested the prediction functionality and we noticed that the DT provides us with a proactive overview for the near future of the patient pathways. The predictive functionality of this DT must be improved depending on the various reasons mentioned in this article. Conclusions: This paper presents a new methodology called HospiT'Win that uses DES and IoT devices to develop a DT of patient pathways in hospitals. This DT consists of two real-time models, a DT for Monitoring (DTM) and a DT for Predicting (DTP). An experimental platform with an emulator of a real hospital was used to validate this methodology before connecting to the real hospital. In the DTP, "dynamic" empirical distributions were used to perform a predictive simulation for the near future. In future research, some additional features and machine learning algorithms will be used to improve the proposed DT models.

Funder

La Région Occitanie Pyrénées-Méditerranée

IMT MINES ALBI

Publisher

F1000 Research Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adapting the Software Development Life Cycle for Digital Twin Development in Healthcare;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

2. Introduction of a Digital Twin for the Product Development Phase;2023 International Conference on Engineering Management of Communication and Technology (EMCTECH);2023-10-16

3. Digital sovereignty or sovereignism? Investigating the political discourse on digital contact tracing apps in France;Information, Communication & Society;2023-07-04

4. Digital Twin Preparation for the Prototyping Phase, a Use Case;Production Processes and Product Evolution in the Age of Disruption;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3