Data-driven modeling in digital twin for power system anomaly detection

Author:

Shi XinORCID,Fang Fang,Qiu Robert

Abstract

Background: Power system anomaly detection is of great significance for realizing system situation awareness and early detection of system operating risks. In view of the complex operating conditions of the system, there are a large number of opaque links in the mechanism, and the anomaly detection approach based on physical mechanism modeling is prone to system errors due to assumptions, simplification, and transfer in the modeling process. This paper focuses on digital twin based data-driven approaches for power system anomaly detection to compensate for the limitation of physical methods in dynamical modeling. Methods: First of all, a digital twin framework for power system real-time analysis is constructed based on the concept of digital twin. Then, this paper conducts researches on the core of the designed framework, i.e., digital twin modeling. Considering the complexity of power system operating conditions, data-driven modeling is preferred and a random matrix and free probability theory based model for anomaly detection of system operating situation is constructed. Results: Simulation data with different spatiotemporal structure generated through a Monte Carlo experiment verified the sensitivity of the constructed model for data correlations. Meanwhile, the case on the system operating data generated through the IEEE 118-bus system validate the effectiveness of the proposed model for the system anomaly detection. Conclusions: The constructed data-driven model can accurately characterize the correlations among data elements, has good sensitivity to the variation of data spatial and temporal correlations, and can depict the data residuals better than the M-P law curve, which indicates the practicability and necessity of the constructed data-driven model for the digital twin modeling of power system anomaly detection.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

F1000 Research Ltd

Reference51 articles.

1. Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations

2. Anomaly Detection and localization in power grids based on random matrix theory and deep learning.;X Shi,2020

3. "Taking the pulse" of Power Systems: Monitoring Oscillations by Wavelet Analysis and Wide Area Measurement System.;S Bruno;2006 IEEE PES Power Systems Conference and Exposition.,2006

4. A big data architecture design for smart grids based on random matrix theory.;X He;IEEE Trans Smart Grid.,2017

5. A correlation analysis method for power systems based on random matrix theory.;X Xu;IEEE Trans Smart Grid.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3