Digital twin-based modeling of natural gas leakage and dispersion in urban utility tunnels

Author:

Cai JitaoORCID,Wu Jiansong,Hu Yanzhu,Han Ziqi,Li Yuefei,Fu Ming,Zou Xiaofu,Wang Xin

Abstract

Background Unexpected leakage accidents of the natural gas pipeline inside urban utility tunnels can pose great threats to public safety, property, and the environment. It highlights the modeling of natural gas leakage and dispersion dynamics, especially from a digital twin implementation perspective facilitating effective emergency response in a data-driven way. Methods In this study, a digital twin-based emergency response framework for gas leakage accidents in urban utility tunnels is proposed. Within this framework, the data-calibrated gas concentration prediction (DC-GCP) model is developed by integrating the Lattice Boltzmann Method (LBM) with data assimilation (DA) techniques. This combination enables accurate spatiotemporal predictions of gas concentrations, even with a prior or inaccurate gas leakage source term. Specifically, we develop a high-performance LBM-based gas concentration prediction model using the parallel programming language Taichi Lang. Based on this model, real-time integration of gas sensor data from utility tunnels is achieved through the DA algorithm. Therefore, the predicted results can be calibrated by the continuous data in the absence of complete source term information. Furthermore, a widely used twin experiment and statistical performance measures (SPMs) are used to evaluate and validate the effectiveness of the proposed approach. Results The results show that all SPMs progressively converge towards their ideal values as calibration progresses. And both the gas concentration predictions and the source term estimations can be calibrated effectively by the proposed approach, achieving a relative error of less than 5%. Conclusions This study helps for dynamic risk assessment and emergency response of natural gas leakage accidents, as well as facilitating the implementation of predictive digital twin in utility tunnels.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3