Quartz crystal based sensor head design and analysis for robot torque sensor application

Author:

Fu HaoORCID,Chen ChinYin,Wang Chongchong,Chao MinChiang,Zhou Qiang,Yang Guilin,Wang Guozhi

Abstract

Background: In recent years, with the gradual development of robot human-computer interaction, robots need to meet the precise control of more complex motion. Torque sensors play an important role. The traditional strain gauge sensor uses a metal strain gauge as the sensitive element, which means that the sensor has a slow response, low resolution and can easily be affected by external signal noise. Aiming at these deficiencies of strain gauge sensors, a sensor with cutting quartz square sheet as the sensor head is proposed. Methods: In order to study the application of quartz square sensing head in the sensor, firstly, COMSOL (5.6) simulation modeling is used to obtain the stress relationship between square quartz sheet and circular quartz sheet. Then the calculation formula of the force frequency coefficient of the circular quartz sheet is modified to obtain the calculation formula of the force frequency coefficient of the square quartz sheet, and the feasibility of the formula is verified by practical experiments. Next, the theoretical simulation and experimental research on the buckling limit force of quartz wafer are carried out, and the formula of buckling limit force in the process of quartz wafer installation is modified. Finally, the designed sensitive head is installed on the elastomer structure for verification. The frequency signal is collected by SGS-THOMSON Microelectronics 32 with a sampling rate of 1000Hz. Results: The main performances of the sensor are range 150nm, sensitivity 350Hz / nm, linearity 98.14%, hysteresis 0.51%, repeatability 98.44%, resolution 0.02%. Conclusions: As the sensitive unit of the torque sensor, the designed quartz wafer can obtain high response time and high resolution, solve the problems of low resolution and slow response time of the traditional strain gauge torque sensor, and reduce the use cost of the sensor.

Funder

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Key Research and Development Program of China

Science and Technology Innovation 2025 Major Project of Ningbo

Chinese Academy of Sciences

Publisher

F1000 Research Ltd

Reference26 articles.

1. Design and research of a robot joint torque sensor.;H Gai;Modern Manufacturing Engineering.,2017

2. Design and Optimization of a Joint Torque Sensor for Robot Collision Detection.;Y Lou;IEEE Sens J.,2019

3. Torque Sensor Embedded Actuator Module for Robotic Applications.;Y Kim;IEEE/ASME T Mech.,2018

4. Principle and manufacture of torque sensor based on torsion effect of piezoelectric quartz disc.;G Yin;Journal of Dalian University of Technology.,2005

5. Dynamic Characteristic Analysis of Planar Piezoelectric Six-Axis Force/Torque Sensor.;J Liu;2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC).,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3