A dynamic obstacle avoidance method for collaborative robots based on trajectory optimization

Author:

Ge WeizongORCID,Chen Hongyu,Ma Hongtao,Li Liuhe,Bai Ming,Ding Xilun,Xu Kun

Abstract

Background Collision detection is crucial in the design of robot planning algorithms. Efficient distance sensors can provide high-resolution environmental collision information to the robot's planning algorithm. However, this also leads to the robot obstacle avoidance performance being limited by the performance of the sensors. Therefore, it becomes a challenge to achieve efficient obstacle avoidance with low-resolution environmental information. Methods First, we use a self-developed capacitive array non-contact distance sensing flexible surface for sensing the proximity of colliding objects. Second, we designed an optimization-based dynamic obstacle avoidance planning algorithm, using only the minimum separation distance and penetration direction as obstacle avoidance information, and referring to the idea of stochastic gradient descent, using real-time collision avoidance information to do single-step optimization adjustment. Results We conducted the dynamic obstacle avoidance test experiment by connecting the electronic skin to the semi-physical prototype and the full physical prototype. The experiments show that efficient dynamic obstacle avoidance can be realized under the maximum effective range of only 5~7cm, and it has strong flexibility to avoid different shapes of dynamic obstacles in a non-contact manner, and finally arrive at the target position. Conclusions In this paper, an online obstacle avoidance planning algorithm designed based on an optimization method that is not limited to the shape of obstacles is proposed, and the effectiveness of the algorithm is verified by physical experiments in combination with a self-developed flexible distance sensing surface. It is of great significance for the safe operation of human-robot interaction in collaborative robots.

Funder

National Natural Science Foundation of China

Publisher

F1000 Research Ltd

Reference19 articles.

1. Modern Robotics.;K Lynch,2017

2. A note on two problems in connexion with graphs.;E Dijkstra,2022

3. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.;P Hart;IEEE Transactions on Systems Science and Cybernetics.,1968

4. The Complexity of Robot Motion Planning.;J Canny,1988

5. Introduction to a* - Stanford Cs Theory[EB/OL].,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3