Machine vision-based automatic focusing method for robot laser welding system

Author:

Qiao Xiaoxu,Li Kai,Luo YiORCID,Wang Xiaodong

Abstract

Background Defocus distance is a critical parameter in laser welding, especially when encountering changes in the contour of the welding surface. This paper proposed an automated focusing method to address the challenging issue of accurately adjusting the defocus distance. Methods The proposed method involves several steps. Firstly, a clarity evaluation function based on the Kirsch operator is employed to calculate real-time image clarity of the welding surface captured by the machine vision system. Next, an improved Canny edge detection algorithm is applied to identify the edge contours of the welding surface, from which their central points are extracted. Finally, automatic focusing is achieved by employing a variable step-size hill-climbing algorithm to search for the focal plane. Results To verify the applicability of the automatic focusing method proposed for welding the solder ring, a robot laser welding system was designed and constructed. Experimental results show that the positioning error of the robot after automatic focusing is within ±0.4 mm. The average time required for a single automatic focusing process is 16.27 s. These results demonstrated the successful accomplishment of automatic adjustment and control of the focal length. Conclusions The machine vision-based automatic focusing method proposed in this paper enhances the consistency of the robot’s position after automatic focusing in robot laser welding systems. It elevates the level of automation in the welding process and provides an efficient solution for accurately adjusting the welding focal distance during the laser welding process.

Funder

Liaoning Revitalization Talents Program

Publisher

F1000 Research Ltd

Reference18 articles.

1. Path Planning with Automatic Seam Extraction Over Point Cloud Models for Robotic Arc Welding.;P Zhou;IEEE Robots and Automation Letters.,2021

2. Vision System of Welding Robot Based on DA-XGboost Algorithm.;Y Cui;IET Conference Proceedings.,2021

3. Multiple Weld Seam Laser Vision Recognition Method Based on the IPCE Algorithm.;W Li;Opt Laser Technol.,2022

4. Autofocus System and Evaluation Methodologies: A Literature Review.;Y Zhang;Sensor Mater.,2018

5. Robotic Micromanipulation and Microassembly Using Monoview and Multiscale Visual Servoing.;B Tamadazte;IEEE ASME Trans Mechatron.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3