Data linkage in medical science using the resource description framework: the AVERT model

Author:

Reddy Brian PORCID,Houlding Brett,Hederman LucyORCID,Canney MarkORCID,Debruyne ChristopheORCID,O'Brien Ciaran,Meehan Alan,O'Sullivan Declan,Little Mark AORCID

Abstract

There is an ongoing challenge as to how best manage and understand ‘big data’ in precision medicine settings. This paper describes the potential for a Linked Data approach, using a Resource Description Framework (RDF) model, to combine multiple datasets with temporal and spatial elements of varying dimensionality. This “AVERT model” provides a framework for converting multiple standalone files of various formats, from both clinical and environmental settings, into a single data source. This data source can thereafter be queried effectively, shared with outside parties, more easily understood by multiple stakeholders using standardized vocabularies, incorporating provenance metadata and supporting temporo-spatial reasoning. The approach has further advantages in terms of data sharing, security and subsequent analysis. We use a case study relating to anti-Glomerular Basement Membrane (GBM) disease, a rare autoimmune condition, to illustrate a technical proof of concept for the AVERT model.

Funder

Health Research Board

Medical Research Charities Group

Meath Foundation

Publisher

F1000 Research Ltd

Subject

General Medicine

Reference34 articles.

1. Data-Driven Innovation: Big Data for Growth and Well-Being.,2015

2. Health Data Governance

3. Diagnosis and classification of Goodpasture's disease (anti-GBM).;T Hellmark;J Autoimmun.,2014

4. Spatial and Temporal Clustering of Anti-Glomerular Basement Membrane Disease.;M Canney;Clin J Am Soc Nephrol.,2016

5. Association of Kawasaki disease with tropospheric wind patterns.;X Rodó;Sci Rep.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3