Modelling temporal data in knowledge graphs: a systematic review protocol

Author:

Hooshafza SepidehORCID,Orlandi FabrizioORCID,Flynn Rachel,McQuaid Louise,Stephens Gaye,O'Connor Laura

Abstract

Background: The benefits of having high-quality healthcare data are well established. However, high-dimensionality and irregularity of healthcare data pose challenges in their management. Knowledge graphs have gained increasing popularity in many domains, as a method for representing data to overcome such challenges. However, little is known about their suitability for use with healthcare data. One important factor in representing data is “time”.Data with time related attributes are considered, temporal data. Temporal data are frequently observed in healthcare and the management of rapidly changing patient data is an ongoing challenge. Traditionally, data models have focused on presenting static data and do not account for temporal data. Temporal data models ensure time consistency in data models and assist analysing the history of data and predicting the future trends in data. Knowledge graphs can include temporal data models and are therefore of interest to the field of healthcare data management. As such, the herein aim is to outline a protocol for an inter-disciplinary systematic review of approaches, applications and challenges in modelling temporal data in knowledge graphs so that we can inform the application of knowledge graphs to healthcare data. Method: The research questions is, what are the existing approaches in modelling temporal data in knowledge graphs. Two sub-questions on applications, and challenges will also be evaluated. ACM digital library, IEEEXplore and ScienceDirect will be searched for this review. The search will be limited to peer-reviewed literature referring to knowledge graphs based on Resource Description Framework (RDF). A narrative synthesis of the papers will be conducted. Conclusion: The findings of this systematic review will be useful for data engineers to better represent data and perform analytics through temporal data modelling. They can be applied in the context of healthcare data and the current challenges faced in managing rapidly changing patient data.

Funder

Health Information and Quality Authority

Publisher

F1000 Research Ltd

Subject

General Medicine

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3