Abstract
Background: n-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyses the reversible NAD+-dependent oxidative phosphorylation of n-glyceraldehyde-3-phosphate to 1,3-diphospho-n-glycerate in both glycolysis and gluconeogenesis.Methods: Four distinct crystal structures of human n-Glyceraldehyde-3-phosphate dehydrogenase (HsGAPDH) have been determined from protein purified from the supernatant of HEK293F human epithelial kidney cells.Results: X-ray crystallography and mass-spectrometry indicate that the catalytic cysteine of the protein (HsGAPDH Cys152) is partially oxidised to cysteine S-sulfonic acid. The average occupancy for the Cys152-S-sulfonic acid modification over the 20 crystallographically independent copies ofHsGAPDH across three of the crystal forms obtained is 0.31±0.17.Conclusions: The modification induces no significant structural changes on the tetrameric enzyme, and only makes aspecific contacts to surface residues in the active site, in keeping with the hypothesis that the oxidising conditions of the secreted mammalian cell expression system result inHsGAPDH catalytic cysteine S-sulfonic acid modification and irreversible inactivation of the enzyme.
Funder
Engineering and Physical Sciences Research Council
Consiglio Nazionale delle Ricerche
Yorkshire Forward
Wellcome Trust
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献