Exploring the context of diacidic motif DE as a signal for unconventional protein secretion in eukaryotic proteins

Author:

Padmanabhan Sreedevi,Biswal Malay RanjanORCID,Manjithaya Ravi,Prakash Meher K.ORCID

Abstract

Unconventional protein secretion (UPS) is an important phenomenon with fundamental implications to cargo export. How eukaryotic proteins transported by UPS are recognized without a conventional signal peptide has been an open question. It was recently observed that a diacidic amino acid motif (ASP-GLU or DE) is necessary for the secretion of superoxide dismutase 1 (SOD1) from yeast under nutrient starvation. Taking cue from this discovery, we explore the hypothesis of whether the diacidic motif DE, which can occur fairly ubiquitously, along with its context, can be a generic signal for unconventional secretion of proteins. Four different contexts were evaluated: a physical context encompassing the structural order and charge signature in the neighbourhood of DE, two signalling contexts reflecting the presence of either a phosphorylatable amino acid (‘X’ in XDE, DXE, DEX) or an LC3 interacting region (LIR) which can trigger autophagy and a co-evolutionary constraint relative to other amino acids in the protein interpreted by examining sequences across different species. Among the 100 proteins we curated from different physiological or pathological conditions, we observe a pattern in the unconventional secretion of heat shock proteins in the cancer secretome, where DE in an ordered structural region has higher odds of being a UPS signal.

Funder

DBT India Alliance

Science and Engineering Research Board

Jawaharlal Nehru Centre for Advanced Scientific Research

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3