Abstract
Photoplethysmography offers a widely used, convenient and non-invasive approach to monitoring basic indices of cardiovascular function, such as heart rate and blood oxygenation. Systematic analysis of the shape of the waveform generated by photoplethysmography might be useful to extract estimates of several physiological and psychological factors influencing the waveform. Here, we developed a robust and automated method for such a systematic analysis across individuals and across different physiological and psychological contexts. We describe a psychophysiologically-relevant model, the Hybrid Excess and Decay (HED) model, which characterises pulse wave morphology in terms of three underlying pressure waves and a decay function. We present the theoretical and practical basis for the model and demonstrate its performance when applied to a pharmacological dataset of 105 participants receiving intravenous administrations of the sympathomimetic drug isoproterenol (isoprenaline). We show that these parameters capture photoplethysmography data with a high degree of precision and, moreover, are sensitive to experimentally-induced changes in interoceptive arousal within individuals. We conclude by discussing the possible value in using the HED model as a complement to standard measures of photoplethysmography signals.
Funder
Lundbeckfonden
Horizon 2020
National Institute of General Medical Sciences
National Institute of Mental Health
NInja Theory Limited
Wellcome Trust
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)