Mathematical modelling of activation-induced heterogeneity in TNF, IL6, NOS2, and IL1β expression reveals cell state transitions underpinning macrophage responses to LPS

Author:

Dey ShoumitORCID,Boucher Dave,Pitchford Jon,Lagos DimitrisORCID

Abstract

Background: Despite extensive work on macrophage heterogeneity, the mechanisms driving activation induced heterogeneity (AIH) in macrophages remain poorly understood. Here, we aimed to develop mathematical models to explore theoretical cellular states underpinning the empirically observed responses of macrophages following lipopolysaccharide (LPS) challenge. Methods: We obtained empirical data following primary and secondary responses to LPS in two in vitro cellular models (bone marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and single-cell protein measurements for four key inflammatory mediators: TNF, IL-6, pro-IL-1β, and NOS2, and used mathematical modelling to understand heterogeneity. Results: For these four factors, we showed that macrophage community AIH is dependent on LPS dose and that altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-responsiveness to LPS. These empirical data can be explained by a mathematical three-state model including negative, positive, and non-responsive states (NRS), but they are also compatible with a four-state model that includes distinct reversibly NRS and non-responsive permanently states (NRPS). Our mathematical model, termed NoRM (Non-Responsive Macrophage) model identifies similarities and differences between BMDM and RAW 264.7 cell responses. In both cell types, transition rates between states in the NoRM model are distinct for each of the tested proteins and, crucially, macrophage hypo-responsiveness is underpinned by changes in transition rates to and from NRS. Conclusions: Overall, we provide a mathematical model for studying macrophage ecology and community dynamics that can be used to elucidate the role of phenotypically negative macrophage populations in AIH and, primary and secondary responses to LPS.

Funder

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3