Pyrethroid resistance and gene expression profile of a new resistant An. gambiae colony from Uganda reveals multiple resistance mechanisms and overexpression of Glutathione-S-Transferases linked to survival of PBO-pyrethroid combination

Author:

Oruni AmbroseORCID,Lynd Amy,Njoroge Harun,Onyige Ismail,van’t Hof Arjen E.,Matovu Enock,Donnelly Martin J.

Abstract

Background: The effectiveness of long-lasting insecticidal nets (LLINs) are being threatened by growing resistance to pyrethroids. To restore their efficacy, a synergist, piperonyl butoxide (PBO) which inhibits cytochrome P450s has been incorporated into pyrethroid treated nets. A trial of PBO-LLINs was conducted in Uganda from 2017 and we attempted to characterize mechanisms of resistance that could impact intervention efficacy. Methods: We established an Anopheles gambiae s.s colony in 2018 using female mosquitoes collected from Busia district in eastern Uganda. We first assessed the phenotypic resistance profile of this colony using WHO tube and net assays using a deltamethrin dose-response approach. The Busia colony was screened for known resistance markers and RT-qPCR targeting 15 genes previously associated with insecticide resistance was performed. Results: The Busia colony had very high resistance to deltamethrin, permethrin and DDT. In addition, the colony had moderate resistance to alpha-cypermethrin and lambda-cyhalothrin but were fully susceptible to bendiocarb and fenitrothion. Exposure to PBO in combination with permethrin and deltamethrin resulted in higher mortality rates in both net and tube assays, with a higher mortality observed in net assays than tube assays. The kdr marker, Vgsc-995S was at very high frequency (91.7-98.9%) whilst the metabolic markers Coeae1d and Cyp4j5-L43F were at very low (1.3% - 11.5%) and moderate (39.5% - 44.7%) frequencies respectively. Our analysis showed that gene expression pattern in mosquitoes exposed to deltamethrin, permethrin or DDT only were similar in comparison to the susceptible strain and there was significant overexpression of cytochrome P450s, glutathione-s-transferases (GSTs) and carboxyl esterases (COEs).  However, mosquitoes exposed to both PBO and pyrethroid strikingly and significantly only overexpressed closely related GSTs compared to unexposed mosquitoes while major cytochrome P450s were underexpressed. Conclusions: The high levels of pyrethroid resistance observed in Busia appears associated with a wide range of metabolic gene families.

Funder

National Institute of Allergy and Infectious Diseases of the National Institutes of Health

Royal Society Wolfson Fellowship

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3