Predicting outcomes of smoking cessation interventions in novel scenarios using ontology-informed, interpretable machine learning

Author:

Hastings JannaORCID,Glauer Martin,West RobertORCID,Thomas JamesORCID,Wright Alison J.,Michie SusanORCID

Abstract

Background Systematic reviews of effectiveness estimate the relative average effects of interventions and comparators in a set of existing studies e.g., using rate ratios. However, policymakers, planners and practitioners require predictions about outcomes in novel scenarios where aspects of the interventions, populations or settings may differ. This study aimed to develop and evaluate an ontology-informed, interpretable machine learning algorithm to predict smoking cessation outcomes using detailed information about interventions, their contexts and evaluation study methods. This is the second of two linked papers on the use of machine learning in the Human Behaviour-Change Project. Methods The study used a corpus of 405 reports of randomised trials of smoking cessation interventions from the Cochrane Library database. These were annotated using the Behaviour Change Intervention Ontology to classify, for each of 971 study arms, 82 features representing details of intervention content and delivery, population, setting, outcome, and study methodology. The annotated data was used to train a novel machine learning algorithm based on a set of interpretable rules organised according to the ontology. The algorithm was evaluated for predictive accuracy by performance in five-fold 80:20 cross-validation, and compared with other approaches. Results The machine learning algorithm produced a mean absolute error in prediction percentage cessation rates of 9.15% in cross-validation, outperforming other approaches including an uninterpretable ‘black-box’ deep neural network (9.42%), a linear regression model (10.55%) and a decision tree-based approach (9.53%). The rules generated by the algorithm were synthesised into a consensus rule set to create a publicly available predictive tool to provide outcome predictions and explanations in the form of rules expressed in terms of predictive features and their combinations. Conclusions An ontologically-informed, interpretable machine learning algorithm, using information about intervention scenarios from reports of smoking cessation trials, can predict outcomes in new smoking cessation intervention scenarios with moderate accuracy.

Funder

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3