Cost-effectiveness of Microsoft Academic Graph with machine learning for automated study identification in a living map of coronavirus disease 2019 (COVID-19) research

Author:

Shemilt Ian,Arno Anneliese,Thomas JamesORCID,Lorenc Theo,Khouja ClaireORCID,Raine Gary,Sutcliffe Katy,Preethy D'Souza,Kwan IreneORCID,Wright Kath,Sowden Amanda

Abstract

Background Identifying new, eligible studies for integration into living systematic reviews and maps usually relies on conventional Boolean updating searches of multiple databases and manual processing of the updated results. Automated searches of one, comprehensive, continuously updated source, with adjunctive machine learning, could enable more efficient searching, selection and prioritisation workflows for updating (living) reviews and maps, though research is needed to establish this. Microsoft Academic Graph (MAG) is a potentially comprehensive single source which also contains metadata that can be used in machine learning to help efficiently identify eligible studies. This study sought to establish whether: (a) MAG was a sufficiently sensitive single source to maintain our living map of COVID-19 research; and (b) eligible records could be identified with an acceptably high level of specificity. Methods We conducted an eight-arm cost-effectiveness analysis to assess the costs, recall and precision of semi-automated workflows, incorporating MAG with adjunctive machine learning, for continually updating our living map. Resource use data (time use) were collected from information specialists and other researchers involved in map production. Our systematic review software, EPPI-Reviewer, was adapted to incorporate MAG and associated machine learning workflows, and also used to collect data on recall, precision, and manual screening workload. Results The semi-automated MAG-enabled workflow dominated conventional workflows in both the base case and sensitivity analyses. At one month our MAG-enabled workflow with machine learning, active learning and fixed screening targets identified 469 additional, eligible articles for inclusion in our living map, and cost £3,179 GBP per week less, compared with conventional methods relying on Boolean searches of Medline and Embase. Conclusions We were able to increase recall and coverage of a large living map, whilst reducing its production costs. This finding is likely to be transferrable to OpenAlex, MAG’s successor database platform.

Funder

National Institute for Health Research

Wellcome Trust

Publisher

F1000 Research Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3