Differential roles for the oxygen sensing enzymes PHD1 and PHD3 in the regulation of neutrophil metabolism and function

Author:

Watts EmilyORCID,Willison Joseph,Arienti SimoneORCID,Sadiku Pranvera,Coelho Patricia,Sanchez-Garcia ManuelORCID,Zhang Ailiang,Murphy Fiona,Dickinson Rebecca,Mirchandani Ananda,Morrison TylerORCID,Lewis AmyORCID,Vermaelen Wesley,Ghesquiere Bart,Carmeliet PeterORCID,Mazzone MassimillianoORCID,Maxwell PatrickORCID,Pugh ChristopherORCID,Dockrell David,Whyte MoiraORCID,Walmsley SarahORCID

Abstract

Background Neutrophils are essential in the early innate immune response to pathogens. Harnessing their antimicrobial powers, without driving excessive and damaging inflammatory responses, represents an attractive therapeutic possibility. The neutrophil population is increasingly recognised to be more diverse and malleable than was previously appreciated. Hypoxic signalling pathways are known to regulate important neutrophil behaviours and, as such, are potential therapeutic targets for regulating neutrophil antimicrobial and inflammatory responses. Methods We used a combination of in vivo and ex vivo models, utilising neutrophil and myeloid specific PHD1 or PHD3 deficient mouse lines to investigate the roles of oxygen sensing prolyl hydroxylase enzymes in the regulation of neutrophilic inflammation and immunity. Mass spectrometry and Seahorse metabolic flux assays were used to analyse the role of metabolic shifts in driving the downstream phenotypes. Results We found that PHD1 deficiency drives alterations in neutrophil metabolism and recruitment, in an oxygen dependent fashion. Despite this, PHD1 deficiency did not significantly alter ex vivo neutrophil phenotypes or in vivo outcomes in mouse models of inflammation. Conversely, PHD3 deficiency was found to enhance neutrophil antibacterial properties without excessive inflammatory responses. This was not linked to changes in the abundance of core metabolites but was associated with increased oxygen consumption and increased mitochondrial reactive oxygen species (mROS) production. Conclusions PHD3 deficiency drives a favourable neutrophil phenotype in infection and, as such, is an important potential therapeutic target.

Funder

Medical Research Council

Academy of Medical Sciences

Wellcome

MRC Shield consortium

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3