Abstract
Frontal area MOs (secondary motor area) is a key brain structure in rodents for making decisions based on sensory evidence and on reward value. Its neurons can encode sensory stimuli, upcoming choices, expected rewards, ongoing actions, and recent outcomes. However, the information encoded, and the nature of the resulting code, may depend on the task being performed. We recorded MOs population activity using two-photon calcium imaging, in a task requiring mice to integrate sensory evidence with reward value. Mice turned a wheel to report the location of a visual stimulus following a delay period, to receive a reward whose size varied over trial blocks. MOs neurons encoded multiple task variables, but not all of those seen in other tasks. In the delay period, MOs neurons strongly encoded the stimulus side but did not significantly encode the reward-size block. A correlation of MOs activity with upcoming choice could be explained by a common effect of stimuli on those two correlates. After the wheel turn and the feedback, the MOs population encoded choice side and choice outcome jointly and nonlinearly according to an exclusive-or (XOR) operation. This nonlinear operation would allow a downstream linear decoder to infer the correct choice side (i.e., the side that would have been rewarded) even on zero contrast trials, when there had been no visible stimulus. These results indicate that MOs neurons flexibly encode some but not all variables that determine behavior, depending on task. Moreover, they reveal that MOs activity can reflect a nonlinear combination of these behavioral variables, allowing simple linear inference of task events that would not have been directly observable.
Funder
European Research Council
HORIZON EUROPE Marie Sklodowska-Curie Actions
Wellcome Trust
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献