Personal exposures to fine particulate matter and carbon monoxide in relation to cooking activities in rural Malawi

Author:

Saleh SepeedehORCID,Sambakunsi Henry,Makina Debora,Chinouya MarthaORCID,Kumwenda Moses,Chirombo JamesORCID,Semple SeanORCID,Mortimer Kevin,Rylance JamieORCID

Abstract

Background: Air pollution is a major environmental risk factor for cardiorespiratory disease. Exposures to household air pollution from cooking and other activities, are particularly high in Southern Africa. Following an extended period of participant observation in a village in Malawi, we aimed to assess individuals’ exposures to fine particulate matter (PM2.5) and carbon monoxide (CO) and to investigate the different sources of exposure, including different cooking methods. Methods: Adult residents of a village in Malawi wore personal PM2.5 and CO monitors for 24-48 hours, sampling every 1 (CO) or 2 minutes (PM2.5). Subsequent in-person interviews recorded potential exposure details over the time periods. We present means and interquartile ranges for overall exposures and summaries stratified by time and activity (exposure). We employed multivariate regression to further explore these characteristics, and Spearman rank correlation to examine the relationship between paired PM2.5 and CO exposures. Results: Twenty participants (17 female; median age 40 years, IQR: 37–56) provided 831 hours of paired PM2.5 and CO data. Concentrations of PM2.5 during combustion activity, usually cooking, far exceeded background levels (no combustion activity): 97.9μg/m3 (IQR: 22.9–482.0), vs 7.6μg/m3, IQR: 2.5–20.6 respectively. Background PM2.5 concentrations were higher during daytime hours (11.7μg/m3 [IQR: 5.2–30.0] vs 3.3μg/m3 at night [IQR: 0.7–8.2]). Highest exposures were influenced by cooking location but associated with charcoal use (for CO) and firewood on a three-stone fire (for PM2.5). Cooking-related exposures were higher in more ventilated places, such as outside the household or on a walled veranda, than during indoor cooking. Conclusions: The study demonstrates the value of combining personal PM2.5 exposure data with detailed contextual information for providing deeper insights into pollution sources and influences. The finding of similar/lower exposures during cooking in seemingly less-ventilated places should prompt a re-evaluation of proposed clean air interventions in these settings.

Funder

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference56 articles.

1. State of Global Air 2020.;Special Report.,2020

2. Air pollution — Level 2 risk.,2019

3. Half the world’s population are exposed to increasing air pollution.;G Shaddick;npj Climate and Atmospheric Science.,2020

4. IHME,2020

5. State of Global Air 2019,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3