Universal detection of foot and mouth disease virus based on the conserved VP0 protein

Author:

Loureiro Silvia,Porta Claudine,Maity Hemanta K.ORCID,Perez Eva,Bagno Flavia F.ORCID,Kotecha AbhayORCID,Fry ElizabethORCID,Ren JingshanORCID,Stuart David I.,Hoenemann Holger,Serrano AmayaORCID,van den Born Erwin,Charleston Bryan,Jones Ian M.ORCID

Abstract

Background: Foot and mouth disease virus (FMDV), a member of the picornaviridae that causes vesicular disease in ungulates, has seven serotypes and a large number of strains, making universal detection challenging. The mature virion is made up of 4 structural proteins, virus protein (VP) 1 – VP4, VP1-VP3 of which form the outer surface of the particle and VP4 largely contained within. Prior to mature virion formation VP2 and VP4 occur together as VP0, a structural component of the pre-capsid which, as a result of containing the internal VP4 sequence, is relatively conserved among all strains and serotypes. Detection of VP0 might therefore represent a universal virus marker. Methods: FMDV virus protein 0 (VP0) was expressed in bacteria as a SUMO fusion protein and the SUMO carrier removed by site specific proteolysis. Rabbit polyvalent sera were generated to the isolated VP0 protein and their reactivity characterised by a number of immunoassays and by epitope mapping on peptide arrays. Results: The specific VP0 serum recognised a variety of FMDV serotypes, as virus and as virus-like-particles, by a variety of assay formats. Epitope mapping showed the predominant epitopes to occur within the unstructured but highly conserved region of the sequence shared among many serotypes. When immunogold stained VLPs were assessed by TEM analysis they revealed exposure of epitopes on the surface of some particles, consistent with particle breathing hitherto reported for some other picornaviruses but not for FMDV. Conclusion: A polyvalent serum based on the VP0 protein of FMDV represents a broadly reactive reagent capable of detection of many if not all FMDV isolates. The suggestion of particle breathing obtained with this serum suggests a reconsideration of the FMDV entry mechanism.

Funder

Wellcome Trust

Publisher

F1000 Research Ltd

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3