Introducing qrlabelr: Fast user-friendly software for machine- and human-readable labels in agricultural research and development

Author:

Kena AlexanderORCID,Ogoe EbenezerORCID,Cruet-Burgos Clara,Agyare Richard,Adoma Naomi,Annor Benjamin,Raymundo Rubi,Morris Geoffrey

Abstract

The advent of modern tools in agricultural experiments, digital data collection, and high-throughput phenotyping have necessitated field plot labels that are both machine- and human-readable. Such labels are usually made with commercial software, which are often inaccessible to under-funded research programs in developing countries. The availability of free fit-for-purpose label design software to under-funded research programs in developing countries would address one of the main roadblocks to modernizing agricultural research. The goal was to develop a new open-source software with design features well-suited for field trials and other agricultural experiments. We report here qrlabelr, a new software for creating print-ready plot labels that builds on the foundation of an existing open-source program. The qrlabelr software offers more flexibility in the label design steps, guarantees true string fidelity after QR encoding, and provides faster label generation to users. The new software is available as an R package and offers customizable functions for generating plot labels. For non-R users or beginners in R programming, the package provides an interactive Shiny app version that can be launched from R locally or accessed online at https://bit.ly/3Sud4xy. The design philosophy of this new program emphasizes the adoption of best practices in plot label design to enhance reproducibility, tracking, and accurate data curation in agricultural research and development studies.

Funder

Bill and Melinda Gates Foundation

United States Agency for International Development

Publisher

F1000 Research Ltd

Reference37 articles.

1. QBMS: Query the Breeding Management System(s).;K Al-Shamaa,2023

2. shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds.;D Attali,2021

3. shinyBS: Twitter Bootstrap Components for Shiny.;E Bailey,2022

4. 1,500 scientists lift the lid on reproducibility.;M Baker;Nature.,2016

5. shiny: Web Application Framework for R.;W Chang,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3