Route Optimization Tool (RoOT) for distribution of vaccines and health products

Author:

Zabinsky Zelda B.ORCID,Zameer MariamORCID,Petroianu Larissa P.G.ORCID,Muteia Mamiza M.,Coelho Aida L.

Abstract

Ensuring the delivery and availability of health products, including temperature-sensitive vaccines, is vital to saving lives in low- and middle-income countries (LMICs).  In many LMICs routes are hand drawn by logisticians and are adjusted based on vehicle availability and product quantities. Easy-to-use real-time supply chain tools are needed to create or adjust routes for available vehicles and road conditions. Having more efficient and optimized distribution is especially critical for COVID-19 vaccine distribution. Route Optimization Tool (RoOT) works best for planning routes for 50 health facilities or less, in two minutes. We develop RoOT using a variant of a Vehicle Routing and Scheduling Algorithm (VeRSA) that is coded in Python but reads and writes Excel files to make data input and using outputs easier. RoOT can be used for routine operations or in emergency situations, such as delivery of new COVID-19 vaccine. The tool has a user-centric design with easy dropdown menus and the ability to optimize on time, risk, or combination of both. RoOT is an open-source tool for optimal routing of health products. It provides optimized routes faster than most commercial software and is tailored to meet the needs of government stakeholders We trained supply chain logisticians in Mozambique on using RoOT, and their feedback validates that RoOT is a practical tool to improve planning and efficient distribution of health products, especially vaccines. We also illustrate how  RoOT can be adapted for an emergency situation by using a test scenario of a cyclone. Currently, RoOT does not allow multi-day routes, and is designed for trips that can be completed within twenty-four hours. Areas for future development include multi-day routing and integration with mapping software to facilitate distance calculations and visualization of routes.

Funder

Bill and Melinda Gates Foundation

Publisher

F1000 Research Ltd

Subject

Public Health, Environmental and Occupational Health,Health Policy,Immunology and Microbiology (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous)

Reference33 articles.

1. Gavi, the Vaccine Alliance,2019

2. Return on investment from childhood immunization in low- and middle-income countries, 2011-20.;S Ozawa;Health Aff (Millwood).,2016

3. 2018 Assessment report of the Global Vaccine Action Plan. Strategic Advisory Group of Experts on Immunization.,2018

4. A System Design Approach for Comprehensive Immunization Supply Chain Strengthening A Case Study from Mozambique.;W Prosser,2016

5. Equitable and effective distribution of the COVID-19 vaccines – a scientific and moral obligation.;A Binagwaho;Int J Health Policy Manag.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of the Transportation Routing Problem During the COVID-19 Pandemic;International Conference on Advanced Intelligent Systems for Sustainable Development;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3