Use of a cow-side oestrus detection test for fertility management in Kenyan smallholder dairy herds.

Author:

Peters Andrew R.ORCID,Wong Johanna T.ORCID,Williams Erin J.,Muasa Bridgit S.,Makoni Nathaniel F.,Ngige Chris M.,Allan Fiona K.ORCID,Christian MichaelORCID,Ball Peter J.H.

Abstract

Background: The use of artificial insemination (AI) has great potential to improve smallholder dairy herds in Africa, however poor success and, in some situations, high costs in Kenya, have been discouraging.  Effective AI requires accurate oestrus detection and the measurement of progesterone (P4) can be used to indicate oestrus as well as non-pregnancy.  A cow-side progesterone lateral flow test, P4 Rapid, was evaluated as an aid to detect oestrus and non-pregnancy in Kenyan dairy cows, and assessed for association with AI efficiency.  Methods: A total of 527 cows were enrolled in the study, from two counties in central and southern Kenya.  Cattle in the test group (n = 308) were presented when suspected to be in oestrus and tested with the P4 Rapid (low P4 = oestrus, medium P4 = inconclusive, high P4 = not in oestrus/pregnant).  Cattle with low P4 were inseminated.  Cattle in the control group (n = 219) were inseminated when oestrus behaviour was detected i.e. standard practice. Results: Of the total P4 Rapid tests performed (n = 745), 1.5% were inconclusive, with the true accuracy of the test between 87-97%.  Conception rates were not significantly higher in the test group (83.9%) compared to the control group (77.9%). Abortion rates were not significantly different between the control (9.5%) and test groups (8.2%).  In the test group, 6.2% (19/308) cows showed a medium or high P4 level on day 0 and nine of these were subsequently found to have been already pregnant. Conclusions: The data indicated that the P4 Rapid test can be a useful tool to assist farmer decision-making in the confirmation of correct timing for AI, and importantly may avoid unnecessary inseminations in pregnant animals, thus reducing the risk of AI-induced abortion.

Funder

Bill and Melinda Gates Foundation

Publisher

F1000 Research Ltd

Subject

Public Health, Environmental and Occupational Health,Health Policy,Immunology and Microbiology (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3