Establishing Interconnections and Predictive Modelling for CMT Cladding on 316L Stainless Steel

Author:

J SachithananthanORCID,R RaviramORCID,M Mohandass,V Gurusamy

Abstract

Background Austenitic stainless-steel cladding is vital for corrosion resistance in industries such as petrochemicals, marine, and nuclear. Weld bead geometry and dilution, governed by process parameters, impact cladding quality. This study examines weld bead geometry with welding current, speed, and nozzle-to-plate distance, creating equations to predict dimensions and control geometry. Method This research explores Cold Metal Transfer (CMT) cladding, emphasizing its interaction with parameters using ANOVA and orthogonal arrays. It uncovers patterns and correlations, leading to a robust mathematical model derived from a Definitive Screen Design in Surface Methodology. Results Process parameter changes particularly affect internal shape (bead width, dilution, penetration area) compared to external shape (penetration, reinforcement) using mathematical model. And the validity of the model is defined. Penetration is primarily affected by welding current and nozzle-to-plate distance, with higher current and smaller distances leading to deeper penetration. Reinforcement is minimally impacted by welding current, speed, and error but decreases with a larger nozzle-to-plate distance. Bead width increases with higher welding current and larger nozzle-to-plate distances, while the effects of welding speed and error are relatively small. Dilution is reduced by higher welding current and larger distances, but error can significantly increase dilution. Welding speed has minimal impact on dilution. Conclusion This study enhances the understanding of CMT cladding. By analyzing parameter interactions, it predicts and controls weld dimensions. Statistical tools reveal patterns, aiding in a strong mathematical model. Significant for industrial applications, it emphasizes the impact of parameters on the quality and structure of cladding using austenitic stainless steel.

Publisher

F1000 Research Ltd

Reference18 articles.

1. IEEE Technology and Engineering Management Society. Singapore Chapter.

2. Process parameter selection for optimising weld bead geometry in stainless steel cladding using Taguchi’s approach.;P Palani;Materials Science and Technology.,2006

3. Sensitivity Analysis for Process Parameters in Cladding of Stainless Steel by Flux Cored Arc Welding.;P Palani;J Manuf Process.,2006

4. An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry.;A Taşdemir;Ships and Offshore Structures.,2021

5. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy.;C Pickin;Science and Technology of Welding and Joining.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3