Early age strength of ambient-cured geopolymer mortars from waste concrete and bricks with different alkaline activators.

Author:

Kogbara Reginald B.ORCID,Al-Zubi Abdelrahman,Masad Eyad A.

Abstract

Background: The dataset in this work emanates from preliminary studies comparing early-age compressive strengths of geopolymer mortars produced from construction and demolition wastes (CDW) commonly found in Qatar using different alkaline activators.  Methods: Waste concrete, waste bricks and steel slag - an industrial waste produced in large quantities in the country - were used as aluminosilicate sources. Waste concrete was used as fine aggregate (75 μm to 4 mm), while solid or hollow red clay bricks were used together with steel slag as aluminosilicate powders. Solid red clay brick (75 μm to 1.4 mm) was also used as fine aggregate in some mixes. Different alkaline activators including solid powder or ground pellet forms of Ca(OH)2, CaO, and Ca(OH)2-NaOH, NaOH-CaCO3 and Na2SiO3-Na2CO3-Ca(OH)2 mixtures were employed by just adding water. A few mixes included both solid powder Ca(OH)2 and viscous solutions of NaOH and NaOH-Na2SiO3 as alkaline activators. The geopolymer mortars also included small amounts of some other additives such as gypsum, microsilica and aluminium sulfate to enhance the geopolymerization and hydration process. Random proportions of the materials were considered in the range-finding experiments, and the mortars produced were tested for compressive strength. Results: The data show the 7-day compressive strengths and densities of the 40 mixtures considered with mostly ambient temperature (20°C) curing. It also shows such data for mixtures in which variables such as curing at 40°C, mixing with hot water at 50 - 60°C temperature, grading of waste concrete aggregates, and collective grinding of the powdered materials were considered. Conclusions: The dataset shows possible early-age compressive strengths of different geopolymer mortar mixture designs and the materials and mixture design methods that can be used to achieve desired early-age strengths from waste concrete and bricks.

Funder

Qatar National Research Fund

Publisher

F1000 Research Ltd

Reference13 articles.

1. The case for sustainable concrete waste management in Qatar.;S Al-Thani;Sustainability in Environment.,2019

2. Properties of geopolymers sourced from construction and demolition waste: A review.;M Alhawat;J Build Eng.,2022

3. Mix composition and characterisation of one-part geopolymers with different activators.;M Askarian;Constr Build Mater.,2019

4. C109/C109M-20: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens).,2020

5. State of the art of geopolymers: A review.;H Castillo;e-Polymers.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3