Machine learning guided prediction of the yield strength and hardness of multi-principal element alloys

Author:

Taufique Mohammad Fuad NurORCID,Mamun Osman,Roy Ankit,Khakurel Hrishabh,Balasubramanian Ganesh,Ouyang Gaoyuan,Cui Jun,Johnson Duane D.ORCID,Devanathan Ram

Abstract

Background: Multi-Principal Element Alloys (MPEAs) have better properties, such as yield strength, hardness, and corrosion resistance compared to conventional alloys. Compositional optimization is a challenging task to obtain desired properties of MPEAs and machine learning is a potential tool to rapidly accelerate the search and design of new materials. Methods: We have implemented different machine learning models to predict the yield strength and Vickers hardness of MPEAs at room temperature and quantify the uncertainty of the predictions. Results: Our results suggest that valence electron concentration (VEC) is the key feature dominating the yield strength and hardness of MPEAs. Our predicted yield strength and hardness values for the experimental validation set show < 15 % error for most cases with respect to the experimental values. Conclusions: Our machine learning model can serve as a useful tool to screen half a trillion MPEAs and down select promising compositions for useful applications.

Funder

U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy

National Science Foundation

Publisher

F1000 Research Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3