A novel integrated framework for reproducible formability predictions using virtual materials testing

Author:

Plowman AdamORCID,Jedrasiak Patryk,Jailin ThomasORCID,Crowther PeterORCID,Mishra Sumeet,Shanthraj Pratheek,Quinta da Fonseca Joao

Abstract

Background: Formed aluminium alloy sheet materials are increasingly adopted in production processes such as vehicle manufacturing, due to the potential for weight-saving and improved recyclability when compared to more traditional steel alloys. To maximise these benefits whilst maintaining sufficient mechanical properties, the link between formability and microstructure must be better understood. Virtual materials testing is a cost-effective strategy for generating microstructure-informed formability predictions. Methods: We developed an open-source hybrid framework, combining experimental and computational tasks, for generating reproducible formability predictions. Starting with experimental texture measurements and stress-strain curves, we calibrated crystal plasticity (CP) model parameters. The framework used these parameters to perform a large set of multiaxial full-field CP simulations, from which various anisotropic yield functions were fitted. With these anisotropy parameters, we then employed a Marciniak-Kuczyński finite-element model to predict forming limit curves, which we compared with those from experimental Nakazima tests. Results: We executed the workflow with the aluminium alloy Surfalex HF (AA6016A) as a case study material. The 18-parameter Barlat yield function provided the best fit, compared to six-parameter functions. Predicted forming limits depended strongly on the chosen hardening law, and good agreement with the experimental forming limit curve was found. All of the generated data have been uploaded to the Zenodo repository. A set of Jupyter notebooks to allow interactive inspection of our methods and data are also available. Conclusions: We demonstrated a robust methodology for replicable virtual materials testing, which enables cheaper and faster formability analyses. This complete workflow is encoded within a simple yet highly customisable computational pipeline that can be applied to any material. To maximise reproducibility, our approach takes care to ensure our methods and data — and the ways in which that data is processed — are unambiguously defined during all steps of the workflow.

Funder

Engineering and Physical Sciences Research Council

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3