Hydrothermal carbonization (HTC) of dairy waste: effect of temperature and initial acidity on the composition and quality of solid and liquid products

Author:

Khalaf NidalORCID,Shi WenxuanORCID,Fenton Owen,Kwapinski Witold,Leahy J.J.

Abstract

Background: Hydrothermal carbonization (HTC) of dairy processing waste was performed to investigate the effect of temperature and initial pH on the yield and composition of the solid (hydrochar) and liquor produced. All hydrochars met the EU requirements of organo-mineral solid fertilizers defined in the Fertilizing Products Regulation in terms of phosphorus (P) and mineral content. Methods: Laboratory scale HTC was performed using pressurized reactors, and the products (solid and liquid) were collected, stored and analyzed for elemental composition and nutrient content using Inductively coupled plasma optical emission spectroscopy (ICP-OES), ultraviolet-visible spectrophotometry (UV-Vis) and other analytic techniques. Results: Maximum hydrochar yield (60.67%) was observed at T=180℃ and pH=2.25, whereas the maximum P-recovery was 80.38% at T=220℃ and pH=4.6. The heavy metal content of the hydrochars was mostly compliant with EU limitations, except for Ni at T=220℃ and pH=8.32. Meanwhile, further study of Chromium (Cr) species is essential to assess the fertilizer quality of the hydrochars. For the liquid product, the increase in temperature beyond 200℃, coupled with an increase in initial acidity (pH=2.25) drove P into the liquor. Simultaneously, increasing HTC temperature and acidity increased the concentration of NO 3 - and NH 4 + in the liquid products to a maximum of 278 and 148 mg/L, respectively, at T=180℃ and pH=4.6. Furthermore, no direct relation between final pH of liquor and NH 4 + concentration was observed. Conclusions: HTC allows for the production of hydrochar as a potential fertilizer material that requires further processing. Adjusting HTC conditions enhanced P-recovery in the hydrochar, while retrieving higher nitrate concentrations in the liquid product. Optimizing HTC for the production of qualified hydrochars requires further treatment of Cr content, studying the availability of P in the products and enhancing the hydrochar yield for economic feasibility.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3