FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research

Author:

Alvarez-Romero CeliaORCID,Martínez-García Alicia,Sinaci A. AnilORCID,Gencturk MertORCID,Méndez EvaORCID,Hernández-Pérez TonyORCID,Liperoti Rosa,Angioletti CarmenORCID,Löbe MatthiasORCID,Ganapathy NagarajanORCID,Deserno Thomas M.,Almada MartaORCID,Costa ElisioORCID,Chronaki CatherineORCID,Cangioli Giorgio,Cornet RonaldORCID,Poblador-Plou BeatrizORCID,Carmona-Pírez JonásORCID,Gimeno-Miguel Antonio,Poncel-Falcó Antonio,Prados-Torres Alexandra,Kovacevic Tomi,Zaric BojanORCID,Bokan Darijo,Hromis Sanja,Djekic Malbasa Jelena,Rapallo Fernández Carlos,Velázquez Fernández Teresa,Rochat Jessica,Gaudet-Blavignac ChristopheORCID,Lovis ChristianORCID,Weber Patrick,Quintero Miriam,Perez-Perez Manuel M.,Ashley KevinORCID,Horton LaurenceORCID,Parra Calderón Carlos LuisORCID

Abstract

Due to the nature of health data, its sharing and reuse for research are limited by ethical, legal and technical barriers. The FAIR4Health project facilitated and promoted the application of FAIR principles in health research data, derived from the publicly funded health research initiatives to make them Findable, Accessible, Interoperable, and Reusable (FAIR). To confirm the feasibility of the FAIR4Health solution, we performed two pathfinder case studies to carry out federated machine learning algorithms on FAIRified datasets from five health research organizations. The case studies demonstrated the potential impact of the developed FAIR4Health solution on health outcomes and social care research. Finally, we promoted the FAIRified data to share and reuse in the European Union Health Research community, defining an effective EU-wide strategy for the use of FAIR principles in health research and preparing the ground for a roadmap for health research institutions to offer access to certified FAIR datasets. This scientific report presents a general overview of the FAIR4Health solution: from the FAIRification workflow design to translate raw data/metadata to FAIR data/metadata in the health research domain to the FAIR4Health demonstrators’ performance.

Funder

Horizon 2020 Framework Programme

Carlos III National Institute of Health

Platform for Dynamization and Innovation of the Spanish National Health System industrial capacities and their effective transfer to the productive sector

European Regional Development Fund (FEDER) ‘A way of making Europe’

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Reference10 articles.

1. The FAIR Guiding Principles for scientific data management and stewardship.;M Wilkinson;Sci Data.,2016

2. Cost of not having FAIR research data - Cost-Benefit analysis for FAIR research data,2018

3. FAIR4Health Guidelines for implementing FAIR open data policy in health research

4. From Raw Data to FAIR Data: The FAIRification Workflow for Health Research.;A Sinaci;Methods Inf Med.,2020

5. FAIR4Health Data Curation Tool

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Desiderata for discoverability and FAIR adoption of health data hubs;Journal of Biomedical Informatics;2024-09

2. Modernization of digital food safety control;Advances in Food and Nutrition Research;2024

3. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach;Journal of Multidisciplinary Healthcare;2023-06

4. FAIR principles to improve the impact on health research management outcomes;Heliyon;2023-05

5. Towards a FAIR Dataset for non-functional requirements;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3