Validation of a lithium-ion commercial battery pack model using experimental data for stationary energy management application

Author:

Foles AnaORCID,Fialho LuísORCID,Horta Pedro,Collares-Pereira ManuelORCID

Abstract

Background: A cost-effective solution for the design of distributed energy storage systems implies the development of battery performance models yielding a suitable representation of its dynamic behaviour under realistic operation conditions.Methods: In this work, a lithium-ion battery (LIB) is tested to be further modelled and integrated into an existing energy management control system. This specific LIB (5.0 kW /9.8 kWh) is integrated with a commercial inverter and solar photovoltaic (PV) system (3.3 kWp) as part of a microgrid that is also encompassing other energy storage technologies at the University of Évora, Pole of INIESC – National Research Infrastructure for Solar Energy Concentration. A testing protocol fully characterizes the battery and the inverter efficiency to describe their performance better. Then, a battery model is built upon both the existent LIB description and experimental fitting regression. The model allows obtaining the voltage curve, the internal resistance (i.e., to describe instantaneous voltage drop/rise and transients), and the state of charge (SOC) and/or energy capacity based on the current input. The developed model is validated through the comparison with the experimental results.Results: The model approach presented a higher voltage RMSE (root mean square error) of 5.51 V and an MRE (maximum relative error) of 5.68 % in the discharge state. Regarding SOC, the MRE obtained was approximately 6.82 %. In the charge state, the highest RMSE voltage was 5.27 V, with an MRE of 6.74 %. Concerning SOC, the MRE obtained was approximately 6.53 %. Conclusions: The developed model is validated through the comparison with experimental results. Based on computational effort, simplicity of use and the associated model error, the approach is validated to the regular conditions of the commercial battery pack to be incorporated in the next research step, following a bottom-up modelling approach for an increasingly more complex smart grid.

Funder

Horizon 2020 Framework Programme

Fundação para a Ciência e Tecnologia

Infraestrutura Nacional de Investigação em Energia Solar de Concentração - FCT / PO Alentejo / PO Lisboa

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Reference51 articles.

1. IEA. Energy Storage - more efforts needed;L Munuera,2020

2. Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications;J Liu;J Energy Storage.,2020

3. Electrical energy storage systems: A comparative life cycle cost analysis;B Zakeri;Renew Sustain Energy Rev.,2015

4. Lithium-ion Battery Costs and Market Squeezed margins seek technology improvements & new business models;C Curry,2017

5. Battery cost forecasting: a review of methods and results with an outlook to 2050.;L Mauler;Energy Environ Sci.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3