Ineffective humoral anti-tick IgY-response in birds: reaction against pathogen constituents?

Author:

Heylen DieterORCID,Bisaglia Beatrice,Fracasso GerardoORCID,Prinsen ElsORCID,Müller Wendt,Matthysen Erik

Abstract

Background: Variation in parasite burdens among hosts is typically related to differences in adaptive immunity. Comprehension of underlying mechanisms is hence necessary to gain better insights into endemic transmission cycles. Here we investigate whether wild songbirds that have never been exposed to ticks develop adaptive humoral immunity against endemic Ixodes ricinus ticks. Methods: Blue tits were exposed three times in succession to wild Ixodes ricinus ticks. For each infestation, serum samples were obtained. An enzyme-linked immunosorbent assay was developed, using tick salivary antigens, in order to quantify the bird’s IgY response against ticks. In addition, at every sampling occasion the birds’ body weight (corrected for body size) and haematocrit level was determined. Results: Individual IgY levels against the ticks’ salivary proteins increased over three consecutive tick infestations, and large among-individual variation was observed. The responses were specifically directed against I. ricinus; cross-reactivity against the congeneric tree-hole tick Ixodes arboricola was negligibly low. IgY responses did not impinge on tick feeding success (engorgement weight and attachment success). Yet, those birds with the highest immune responses were more capable to reduce the acute harm (blood depletions) by compensating erythrocyte loss. Furthermore, at the end of the experiment, these birds had gained more body weight than birds with lower IgY levels. Conclusions: Latter observations can be considered as an effect of host quality and/or tolerance mechanisms. Birds anticipate the (future) costs of the activation of the immune system by ticks and/or ongoing tick-borne pathogen infections. Furthermore, although unsuccessful against tick feeding, the IgY responses may indirectly protect birds against tick-borne disease by acting against salivary protein secretions on which pathogens rely for transmission.

Funder

Horizon 2020 Framework Programme

Fonds Wetenschappelijk Onderzoek

ERASMUS

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3