Data assimilation with agent-based models using Markov chain sampling

Author:

Tang DanielORCID,Malleson NickORCID

Abstract

Every day, weather forecasting centres around the world make use of noisy, incomplete observations of the atmosphere to update their weather forecasts. This process is known as data assimilation, data fusion or state estimation and is best expressed as Bayesian inference: given a set of observations, some prior beliefs and a model of the target system, what is the probability distribution of some set of unobserved quantities or latent variables at some time, possibly in the future? While data assimilation has developed rapidly in some areas, relatively little progress has been made in performing data assimilation with agent-based models. This has hampered the use of agent-based models to make quantitative claims about real-world systems. Here we present an algorithm that uses Markov-Chain-Monte-Carlo (MCMC) methods to generate samples of the parameters and trajectories of an agent-based model over a window of time given a set of possibly noisy, aggregated and incomplete observations of the system. This can be used as-is, or as part of a data assimilation cycle or sequential-MCMC algorithm. Our algorithm is applicable to time-stepping, agent-based models whose agents have a finite set of states and a finite number of ways of acting on the world. As presented, the algorithm is only practical for agents with a few bytes of internal state although we discuss ways of removing this restriction. We demonstrate the algorithm by performing data assimilation with an agent-based, spatial predator-prey model.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3