Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering

Author:

Carreira MarianaORCID,Pires-Santos ManuelORCID,Correia Clara R,Nadine Sara,Mano João FORCID

Abstract

Background Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography’s role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods A co-culture of Wharton’s jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.

Funder

Horizon 2020 Framework Programme

Fundação para a Ciência e a Tecnologia

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3