Experiences with a training DSW knowledge model for early-stage researchers

Author:

Devignes Marie-DominiqueORCID,Smaïl-Tabbone MalikaORCID,Dhondge HrishikeshORCID,Dolcemascolo Roswitha,Gavaldá-García JoseORCID,Higuera-Rodriguez R. AnahíORCID,Kravchenko AnnaORCID,Roca Martínez Joel,Messini Niki,Pérez-Ràfols AnnaORCID,Pérez Ropero GuillermoORCID,Sperotto Luca,Chauvot de Beauchêne Isaure,Vranken WimORCID

Abstract

Background: Data management is fast becoming an essential part of scientific practice, driven by open science and FAIR (findable, accessible, interoperable, and reusable) data sharing requirements. Whilst data management plans (DMPs) are clear to data management experts and data stewards, understandings of their purpose and creation are often obscure to the producers of the data, which in academic environments are often PhD students. Methods: Within the RNAct EU Horizon 2020 ITN project, we engaged the 10 RNAct early-stage researchers (ESRs) in a training project aimed at formulating a DMP. To do so, we used the Data Stewardship Wizard (DSW) framework and modified the existing Life Sciences Knowledge Model into a simplified version aimed at training young scientists, with computational or experimental backgrounds, in core data management principles. We collected feedback from the ESRs during this exercise. Results: Here, we introduce our new life-sciences training DMP template for young scientists. We report and discuss our experiences as principal investigators (PIs) and ESRs during this project and address the typical difficulties that are encountered in developing and understanding a DMP. Conclusions: We found that the DS-wizard can also be an appropriate tool for DMP training, to get terminology and concepts across to researchers. A full training in addition requires an upstream step to present basic DMP concepts and a downstream step to publish a dataset in a (public) repository. Overall, the DS-Wizard tool was essential for our DMP training and we hope our efforts can be used in other projects.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3