Digital twins for land-based aquaculture: A case study for rainbow trout (Oncorhynchus mykiss)

Author:

Lima Adriano C.,Royer EdouardORCID,Bolzonella MatteoORCID,Pastres Roberto

Abstract

The virtual, digital counterpart of a physical object, referred as digital twin, derives from the Internet of Things (IoT), and involves real-time acquisition and processing of large data sets. A fully implemented system ultimately enables real-time and remote management, as well as the reproduction of real and forecasted scenarios. Under the emerging framework of Precision Fish Farming, which brings control-engineering principles to fish production, we set up digital twin prototypes for land-based finfish farms. The digital twin is aimed at supporting producers in optimizing feeding practices, oxygen supply and fish population management with respect to 1) fish growth performances; 2) fish welfare, and 3) environmental loads. It relies on integrated mathematical models which are fed with data from in-situ sensors and from external sources, and simulate several dynamic processes, allowing the estimation of key parameters describing the ambient environment and the fishes. A conceptual application targeted at rearing cycles of rainbow trout (Oncorhynchus mykiss) in an operational in-land aquafarm in Italy is presented. The digital twin takes into account the disparate levels of automation and control that are found within this farm, and considerations are made on preferential directions for future developments. In spite of its potential, and not only in the aquaculture sector, the development of digital twins is still at its early stage. Furthermore, Precision Fish Farming applications in land-based systems as well as targeted at rainbow trout are novel developments.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Reference27 articles.

1. The future of european aquaculture. our vision: A strategic agenda for research innovation,2012

2. Precision fish farming: A new framework to improve production in aquaculture.;M Føre;Biosyst Eng.,2018

3. Report on instrumentation of GAIN pilot sites;M Service,2019

4. Report on impact asessment indicators monitoring framework;L Rosenthal,2021

5. Precision livestock farming: An international review of scientific and commercial aspects.;T Banhazi;Int J Agric & Biol Eng.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3