MTaxi: A comparative tool for taxon identification of ultra low coverage ancient genomes

Author:

Atağ GözdeORCID,Vural Kıvılcım BaşakORCID,Kaptan Damla,Özkan MustafaORCID,Koptekin DilekORCID,Sağlıcan EkinORCID,Doğramacı Sevcan,Köz Mevlüt,Yılmaz ArdanORCID,Söylev Arda,Togan İnci,Somel MehmetORCID,Özer FüsunORCID

Abstract

A major challenge in zooarchaeology is to morphologically distinguish closely related species’ remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species’ reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3