Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters

Author:

Ternes PatriciaORCID,Ward Jonathan A,Heppenstall AlisonORCID,Kumar Vijay,Kieu Le-Minh,Malleson NickORCID

Abstract

This paper explores the use of a particle filter—a data assimilation method—to incorporate real-time data into an agent-based model. We apply the method to a simulation of real pedestrians moving through the concourse of Grand Central Terminal in New York City (USA).  The results show that the particle filter does not perform well due to (i) the unpredictable behaviour of some pedestrians and (ii) because the filter does not optimise the categorical agent parameters that are characteristic of this type of model. This problem only arises because the experiments use real-world pedestrian movement data, rather than simulated, hypothetical data, as is more common. We point to a potential solution that involves resampling some of the variables in a particle, such as the locations of the agents in space, but keeps other variables such as the agents’ choice of destination. This research illustrates the importance of including real-world data and provides a proof of concept for the application of an improved particle filter to an agent-based model.  The obstacles and solutions discussed have important implications for future work that is focused on building large-scale real-time agent-based models.

Funder

Horizon 2020 Framework Programme

Leeds Institute for Data Analytics

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coupling an agent-based model and an ensemble Kalman filter for real-time crowd modelling;Royal Society Open Science;2024-04

2. Likelihood-Based Methods Improve Parameter Estimation in Opinion Dynamics Models;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

3. Data Assimilation for Agent-Based Models;Mathematics;2023-10-15

4. Agent-based modelling for Urban Analytics: State of the art and challenges;AI Communications;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3