A framework for early-stage sustainability assessment of innovation projects enabled by weighted sum multi-criteria decision analysis in the presence of uncertainty

Author:

Henderson JohnORCID,Peeling RobertORCID

Abstract

A two-level hierarchical framework for early-stage sustainability assessment (FESSA) amongst a set of alternatives applicable from the earliest stages of process or product development is introduced, and its use in combination with an improved method weighted-sum method multi-criteria decision analysis (WSM-MCDA) in the presence of uncertainty is presented through application to a case study based upon a real-world decision scenario from speciality polymer manufacture. The approach taken addresses the challenge faced by those responsible for innovation management in the manufacturing process industries to make simultaneously timely and rational decisions early in the innovation cycle when knowledge gaps and uncertainty about the options tend to be at their highest. The Computed Uncertainty Range Evaluations (CURE) WSM-MCDA method provides better discrimination than the existing Multiple Attribute Range Evaluations (MARE) method without the computational burden of generating heuristic outcome distributions via Monte-Carlo simulation.

Funder

Horizon Europe Framework Programme

UK Research and Innovation

Publisher

F1000 Research Ltd

Reference13 articles.

1. Multiple criteria decision analysis: an integrated approach.;V Belton,2012

2. Safe and sustainable by design chemicals and materials - framework for the definition of criteria and evaluation procedure for chemicals and materials.;C Caldeira,2022

3. Scale-up of industrial microbial processes.;J Crater;FEMS Microbiol Lett.,2018

4. Handling uncertain decisions in whole process design.;R Hodgett;Production Planning & Control: The Management of Operations.,2014

5. SURE: a method for decision-making under uncertainty.;R Hodgett;Expert Syst Appl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3