Advancements in robotic-enabled sensing: A European perspective

Author:

Mineo CarmeloORCID

Abstract

Robotic Non-destructive Testing and Sensing stands at the forefront of technological innovation, offering capabilities in assessing structural integrity, safety, and material quality across diverse industries. This comprehensive review article provides a detailed exploration of the field, focusing on the substantial contributions of European researchers and institutions. The need for non-destructive testing has been a constant in industries that rely on structural integrity, including aerospace, manufacturing, energy, construction, and healthcare. Traditional testing methods, such as radiography, ultrasonic testing, magnetic particle testing, and dye penetrant testing, have been integral for quality control and safety assurance. However, the robotisation of such methods has marked a profound shift, enabling precise, fast, efficient, and repeatable testing while minimising human exposure to hazardous environments. European researchers and institutions have played an instrumental role in driving the evolution of robotic-enabled sensing. The historical perspective of the field reveals the pioneering spirit of Europe, as collaborative initiatives led to the development of robotic platforms equipped with advanced sensors and testing techniques. A critical aspect of the European impact on robotic inspection applications lies in developing advanced sensors, innovative robotic platforms, novel robotic path-planning and control approaches and data collection and visualisation tools. These developments continue to influence the global landscape of robotic-enabled sensing. European researchers remain at the forefront of current trends and innovations as the field continues to evolve. This review article will delve into these recent advancements, highlighting Europe’s pivotal role in pushing the boundaries of technology and application. The implications and applications of robotic sensing reverberate across multiple sectors worldwide. From inspecting critical aerospace components to ensuring the quality of manufactured goods, these technologies underpin safety and quality standards.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Reference65 articles.

1. Autonomous robotic sensing for simultaneous geometric and volumetric inspection of free-form parts.;C Mineo;J Intell Robot Syst.,2022

2. Robotic path planning for non-destructive testing – A custom MATLAB toolbox approach.;C Mineo;Robot Comput Integr Manuf.,2016

3. From the unimate to the delta robot: the early decades of industrial robotics.;A Gasparetto,2019

4. Automated NDT for large diameter tubular products.;R Spinetti;Jones and Laughlin Steel Corp.,1976

5. Applied remote sensing.;C Lo,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3