Microstructural characterization of near-surface microstructures on rail wheels in service – an insight into “stratified surface layers”

Author:

Freisinger MatthiasORCID,Trausmuth Andreas

Abstract

Background: To decrease maintenance costs and improve safety in rail transportation, the understanding of rail and wheel defects is vital. Studies on “white etching layers” (WEL) on rails and wheels, prone to fatigue crack initiation, have been extensively studied. Recently, a relative named “brown etching layer” (BEL) and its combination, the so-called “stratified surface layer” (SSL), are observed in the field. This study presents an investigation on a rail wheel affected by mechanical and thermal loadings from service with focus on the different evolved layers in the near-surface region. Methods: Optical microscopy is performed on etched cross-sectional cuts to identify different evolved microstructures (WEL, BEL, SSL), further, specific regions are investigated in detail by scanning electron microscopy to evaluate the microstructural characteristics.  To analyze the change in mechanical properties, low-load Vickers hardness investigations are executed in distinctive zones. Results: This study highlights the broad variety of evolved microstructures, however, a rough classification of WEL (fine mesh-like microstructure, 900 – 1200 HV0.01) and BEL (globular cementite particles, 400 – 600 HV0.01) is given. Further, results indicate that the BEL is commonly accompanied by a WEL, representing an SSL. Conclusions: The complex loading situation in a wheel-rail contact can lead to the formation of WEL, BEL and SSL. The observation of numerous initiated fatigue cracks within these regions demonstrates the relevance of in-depth studies on evolved microstructures in wheel-rail contacts.

Funder

Horizon 2020 Framework Programme

Austrian COMET-Program

Publisher

F1000 Research Ltd

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3